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The speaker...

● Full time sysadmin
– Solaris, Linux, other unices...

– Jack of all trades

– Application focus

● Part time developer/enthusiast
– OpenSolaris

– Governing Board Member



  

ProQuest

● Online Publisher, US parent
● I deal with mostly literature and historical data

– Early English Books, Early European Books

– Vogue

– Literature Online, Film, media, video

– Periodicals

● Digital scans, indexing, strong search
● Customers – academic, universities, research

– Not individuals or the public



  

One day

● “We've got this project...”
● Short term, high traffic
● Very public, on national media
● High profile, fantastic PR
● Potential for egg on face
● Can we build it?



  

Queen Victoria's Journals

● Princess Victoria started 
a journal in 1832

● Carried on as Queen un-
til her death in 1901

● 141 volumes, 43765 
pages

● Digitally scanned



  

Initial Evaluation

● Let's assume it's on the BBC News
– And national newspapers

● And 1 million page views per day
● Given existing similar sites
● System infrastructure will be easy
● Network load might be interesting

– Maybe 300M/s



  

Handling the data

● Scanned/photographed
● Stored on ZFS
● ImageMagick
● Zoomify
● Replicated image servers
● Reprocess until customer 

happy
● Keyed data for search



  

Handwriting

● Handwritten texts only 
exist from the time 
before Victoria became 
queen

● Only 13 small purple 
and marbled volumes 
survive



  

Standard Architecture

● Use Solaris with Zones for everything
● Sparse root, very lightweight

– Guarantees every system is identical

● Application lives in one place
– /opt/proquest

● Private application stack
– Independence from vendor, patches

● Replicate horizontally
– Just copy the one directory (+extras)



  

Application layout

● /opt/proquest
– Same on every zone

● /opt/proquest/{apache,java,tomcat}
– Read-only (root -owned)

● /opt/proquest/qvj/{apache,tomcat}
– Configuration and logs only

● Virtualization at every level
– System, application, application instance



  

Princess Beatrice Transcripts

● Manually transcribed 
after Victoria's death

● On her instructions
● Sanitised and edited
● Originals destroyed
● Sketches and doodles 

cut and pasted
● Finished in 1940



  

Build a zone

● zonecfg -z qvj -f zconfig.qvj
create
set zonepath=/storage/zones/qvj
set autoboot=true
add net
set physical=igb0
set address=172.18.1.36/24
end
add fs
set dir=/opt/sfw
set special=/opt/sfw
set type=lofs
set options=ro
end
add fs
set dir=/opt/proquest
set special=/storage/qvj/opt/proquest
set type=lofs
end
verify
commit



  

What we do NOT do

● Manage the zone
– No packaging, no storage delegation

– It's all about the application

● Patch zones
– Migrate to newly patched host, then patch server

● Migrate zones
– Save app, destroy zone, build new zone, restore



  

Lord Esher transcripts

● First Keeper of the 
Royal Archives

● Typewritten
● Unknown to Beatrice
● Unabridged
● 1832-1840



  

Production Infrastructure

● Load balancer handles individual failures
● N web zones (2, 4, 8) apache/tomcat
● M search zones (Solr in this case)
● Separate url and zones for images

– Offsite at Everycity during launch

● Our normal site has MySQL – this doesn't
– Authentication (free to UK)

– History and personalization (remove)



  

System Capacity

● Most of our sites use tomcat, so each zone needs 
approx 2G of RAM

● OS overhead is essentially zero
● Typically low traffic, so memory is the constraint
● Even on busy sites, the application is a bottleneck
● So we basically size for RAM, and add zones until 

(just before) we start to swap
● Actually need to add lots of swap



  

The Artist

● Queen Victoria was a 
keen artist

● Scanned many of her 
sketches

● Also many illustrations 
in the journals



  

Testing, testing...

● Lots of new technologies (in our context)
– Solr, no mysql, GeoIP

– And go to current versions in the stack

● Need to work on each of those
– Easy – create a zone

– Actually, lots of zones...

● Use our standards to create lots of clones
– Clone the app, not the zone



  

Performance

● Normally, we are low usage (but high value)
● Critical bottleneck – MySQL – was obvious

– Removed very early

● Complete environment cloned using zones
– And a whole bunch of load generators

● Actual testing almost trivial
– Plain wget + ab

– Components + whole stack



  

Fixes

● 1 page was horrifically expensive
– >2s to render afresh with each request

– Generate once, save, serve that

● HTML is extremely verbose
– mod_gzip made a huge difference

● Design images unoptimized
– 5x improvement possible

● Timeline sent twice for Mobile
– Detect before sending the data



  



  

Other tricks - ZFS

● Each zone has its own zfs file system
– Just 1, so managed as a single unit

– Automatic snapshots (daily)

– Compression enabled (great for logs)

● Corrupted zone? Roll back
– Shut down zone

– zfs rollback

– Boot zone



  

Other Tricks - SMF

● All services managed using SMF
– Trivial start/stop

– Clean application environment

– Dramatic reduction of trivial call-outs

● Developers/app owners have privilege
– Just to restart, not to modify boot state

● Assign net_privaddr if appropriate
– All applications run on the “official” port

● SMF still has rough edges



  



  

Thank You

http://www.queenvictoriasjournals.org/
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