

How Zones Served Queen Victoria

Peter Tribble
ProQuest

The speaker...

● Full time sysadmin
– Solaris, Linux, other unices...

– Jack of all trades

– Application focus

● Part time developer/enthusiast
– OpenSolaris

– Governing Board Member

ProQuest

● Online Publisher, US parent
● I deal with mostly literature and historical data

– Early English Books, Early European Books

– Vogue

– Literature Online, Film, media, video

– Periodicals

● Digital scans, indexing, strong search
● Customers – academic, universities, research

– Not individuals or the public

One day

● “We've got this project...”
● Short term, high traffic
● Very public, on national media
● High profile, fantastic PR
● Potential for egg on face
● Can we build it?

Queen Victoria's Journals

● Princess Victoria started
a journal in 1832

● Carried on as Queen un-
til her death in 1901

● 141 volumes, 43765
pages

● Digitally scanned

Initial Evaluation

● Let's assume it's on the BBC News
– And national newspapers

● And 1 million page views per day
● Given existing similar sites
● System infrastructure will be easy
● Network load might be interesting

– Maybe 300M/s

Handling the data

● Scanned/photographed
● Stored on ZFS
● ImageMagick
● Zoomify
● Replicated image servers
● Reprocess until customer

happy
● Keyed data for search

Handwriting

● Handwritten texts only
exist from the time
before Victoria became
queen

● Only 13 small purple
and marbled volumes
survive

Standard Architecture

● Use Solaris with Zones for everything
● Sparse root, very lightweight

– Guarantees every system is identical

● Application lives in one place
– /opt/proquest

● Private application stack
– Independence from vendor, patches

● Replicate horizontally
– Just copy the one directory (+extras)

Application layout

● /opt/proquest
– Same on every zone

● /opt/proquest/{apache,java,tomcat}
– Read-only (root -owned)

● /opt/proquest/qvj/{apache,tomcat}
– Configuration and logs only

● Virtualization at every level
– System, application, application instance

Princess Beatrice Transcripts

● Manually transcribed
after Victoria's death

● On her instructions
● Sanitised and edited
● Originals destroyed
● Sketches and doodles

cut and pasted
● Finished in 1940

Build a zone

● zonecfg -z qvj -f zconfig.qvj
create
set zonepath=/storage/zones/qvj
set autoboot=true
add net
set physical=igb0
set address=172.18.1.36/24
end
add fs
set dir=/opt/sfw
set special=/opt/sfw
set type=lofs
set options=ro
end
add fs
set dir=/opt/proquest
set special=/storage/qvj/opt/proquest
set type=lofs
end
verify
commit

What we do NOT do

● Manage the zone
– No packaging, no storage delegation

– It's all about the application

● Patch zones
– Migrate to newly patched host, then patch server

● Migrate zones
– Save app, destroy zone, build new zone, restore

Lord Esher transcripts

● First Keeper of the
Royal Archives

● Typewritten
● Unknown to Beatrice
● Unabridged
● 1832-1840

Production Infrastructure

● Load balancer handles individual failures
● N web zones (2, 4, 8) apache/tomcat
● M search zones (Solr in this case)
● Separate url and zones for images

– Offsite at Everycity during launch

● Our normal site has MySQL – this doesn't
– Authentication (free to UK)

– History and personalization (remove)

System Capacity

● Most of our sites use tomcat, so each zone needs
approx 2G of RAM

● OS overhead is essentially zero
● Typically low traffic, so memory is the constraint
● Even on busy sites, the application is a bottleneck
● So we basically size for RAM, and add zones until

(just before) we start to swap
● Actually need to add lots of swap

The Artist

● Queen Victoria was a
keen artist

● Scanned many of her
sketches

● Also many illustrations
in the journals

Testing, testing...

● Lots of new technologies (in our context)
– Solr, no mysql, GeoIP

– And go to current versions in the stack

● Need to work on each of those
– Easy – create a zone

– Actually, lots of zones...

● Use our standards to create lots of clones
– Clone the app, not the zone

Performance

● Normally, we are low usage (but high value)
● Critical bottleneck – MySQL – was obvious

– Removed very early

● Complete environment cloned using zones
– And a whole bunch of load generators

● Actual testing almost trivial
– Plain wget + ab

– Components + whole stack

Fixes

● 1 page was horrifically expensive
– >2s to render afresh with each request

– Generate once, save, serve that

● HTML is extremely verbose
– mod_gzip made a huge difference

● Design images unoptimized
– 5x improvement possible

● Timeline sent twice for Mobile
– Detect before sending the data

Other tricks - ZFS

● Each zone has its own zfs file system
– Just 1, so managed as a single unit

– Automatic snapshots (daily)

– Compression enabled (great for logs)

● Corrupted zone? Roll back
– Shut down zone

– zfs rollback

– Boot zone

Other Tricks - SMF

● All services managed using SMF
– Trivial start/stop

– Clean application environment

– Dramatic reduction of trivial call-outs

● Developers/app owners have privilege
– Just to restart, not to modify boot state

● Assign net_privaddr if appropriate
– All applications run on the “official” port

● SMF still has rough edges

Thank You

http://www.queenvictoriasjournals.org/

	Title
	Slide 2
	Slide 3
	Long-term Goal
	Customer Wishes
	Fulfilling Customer Needs
	Slide 7
	Slide 8
	Cost Analysis
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Next Steps of Action
	Slide 16
	Strengths and Advantages
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

